466 research outputs found

    An asymptotic analysis of undesteady diffusion flames for large activation energies

    Full text link
    The limit of large activation energy is studied for the process of simultaneous mixing and chemical reaction of two reactants undergoing a one-step irreversible Arrhenius reaction. Consideration is restricted to problems of the evolution type ike unsteady mixing and boundary-layer combustion for which the solution is uniquely determined in terms of the initial conditions. The continuous transition from the nearly-frozen to the near-equilibrium regimes is described. The analysis uncovers the existence of: i) An ignition regime, in which a mixing layer develops with only minor effects of the chemical reaction, until a thermal runaway occurs somewhere within the mixing region ; at this location chemical equilibrium then is established rapidly. ii) A deflagration regime, in which premixed flames originate from the ignition point and move through the mixing region to burn completely the reactant not in excess. And iii) a diffusion flame regime, in-which a thin diffusion flame, that is established when the deflagration wave crosses the surface where the reactants are present in stoichiometric proportions, consumes the excess reactants that could not be burned by the premixed flame. This is accomplished by a process in which the reactants diffuse through a thick layer of reaction products. There exists experimental evidence to support this rather complex picture deduced theoretically

    Asymptotic analysis of unsteady diffusion flames for large activation energies

    Get PDF
    The limit of large activation energy is studied for the process of simultaneous mixing and chemical reaction of two reactants undergoing a one-step irreversible Arrhenius reaction. Consideration is restricted to problems of the evolution type such as unsteady mixing and boundary-layer combustion - for which the solution is uniquely determined in terms of the initial conditions. The continuous transition from the nearly-frozen to the near-equilibrium regimes is described

    Aerodynamic Optimization of High-Speed Trains Nose using a Genetic Algorithm and Artificial Neural Network

    Get PDF
    An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via BĂ©zier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included

    Prediction of wake effects on wind farm power production using a RANS approach. Part II. Offshore: Case studies from the UPWIND project

    Get PDF
    The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes

    Wind turbine wakes for wind energy

    Get PDF
    During recent years, wind energy has moved from an emerging technology to a nearly competitive technology. This fact, coupled with an increasing global focus on environmental concern and a political desire of a certain level of diversification in the energy supply, ensures wind energy an important role in the future electricity market. For this challenge to be met in a cost-efficient way, a substantial part of new wind turbine installations is foreseen to be erected in big onshore or offshore wind farms. This fact makes the production, loading and reliability of turbines operating under such conditions of particular interest

    Index for asset value measure obtained from condition monitoring digitalized data interpretation. A railway asset management application

    Get PDF
    Hosted by the Johannes Kepler University, Linz, Austria. May 23-24, 2019The objective of any asset is to provide value to the organization, being the corner stone to get a highest possible economic benefit in a sustainable way. An effective asset value management demands method that allow measuring and comparing the expected value with the real value realized at any time during its life cycle for value informed decision-making. Digitalization is providing new data about events and states related to asset condition and risk, information that can be reinterpreted to generate value measure strategies. This paper presents a proposal of TVO (Total Value of Ownership) model where it is possible to quantify and measure the value, including its monitoring throughout the life cycle of the asset and/or system. Proposed TVO model is focused on Safety, one of the most relevant value factors for Industry and Infrastructure sectors. Asset events and states are intrinsically linked to the defined failure modes. Consequently, it is necessary to structure the system information around the failure modes that have been defined, in order to obtain a value measurement index. A railway use case is presented

    Hydrogen as a fuel. some aspects of its combustion processes

    Get PDF
    The possibility of utilizing hydrogen as a fuel in air breathing power plants or in other energy conversion systems in a near future has been extensively studied and discussed, as for example, in the First World Hydrogen Energy Conference, including the associated problems of energy storage and energy transportation. Research on combustion of hydrogen has been mainly pionered through aerospace programs, due to the fact of the high interest of hydrogen both as a propellant for liquid fueled rocket motors, and as a fuel of excellent characteristics for air breathing engines, for the propulsion of subsonic, supersonic and hypersonic vehicles

    A theoretical model for the combustion of droplets in supercritical conditions and gas pockets

    Full text link
    Supercritical combustion of droplets is studied by means of a physical model which assumes spherical symmetry, laminar conditions, constant pressure and a zero-thickness flame. Boundary conditions at the infinity state that temperature and composition of the mixture are given and constant. Initial distributions of temperature and mass fractions of the species are given, as well as the initial conditions at the droplet surface. As combustion proceeds, droplet surface is not considered to exist as a physical boundary allowing unrestricted diffusion of species through it. With some additional simplifications for the density and t r ansport coefficients, a numerical solution of the problem is obtained. An analytical solution of the problem is also obtained by means of an asymptotic analysis. This solution applies when the initial temperature of the droplet is small as compared with the temperature of the sourounding atmosphere. It is shown that this is the most impor t ant case from the technological point of view. For this case results show that an apparent droplet exists throughout most of the process, in which its surface is characterized by an abrupt change in temperature and composition of the chemical species. Results show burning rates, combustion times, flame radius and temperature at the droplet center as function of the principal variables of the process. In particular, the square of the apparent droplet radius is a linear function of time as occurs in subcritical combustion. It is shown that combustion times are faster in supercritical conditions than in subcritical conditions with the minimum value existing at critical conditions. A numerical application is carried out for the case of oxygen droplets burning in hydrogen and a comparison is carried out between the theoretical results obtained numerically and analytically as well as with those experimentally obtained

    CFD modelling of the interaction between the Surface Boundary Layer and rotor wake. Comparison of results obtained with different turbulence models and mesh strategies

    Get PDF
    A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity

    Aerodynamic Optimization of a High-speed Train using Genetic Algorithms

    Get PDF
    Genetic algorithms (GA) have been used for the minimization of the aerodynamic drag of a train subject to front wind. The significant importance of the external aerodynamic drag on the total resistance a train experiments as the cruise speed is increased highlights the interest of this study. A complete description of the methodology required for this optimization method is introduced here, where the parameterization of the geometry to be optimized and the metamodel used to speed up the optimization process are detailed. A reduction of about a 25% of the initial aerodynamic drag is obtained in this study, what confirms GA as a proper method for this optimization problem. The evolution of the nose shape is consistent with the literature. The advantage of using metamodels is stressed thanks to the information of the whole design space extracted from it. The influence of each design variable on the objective function is analyzed by means of an ANOVA test
    • …
    corecore